If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7x=63
We move all terms to the left:
2x^2+7x-(63)=0
a = 2; b = 7; c = -63;
Δ = b2-4ac
Δ = 72-4·2·(-63)
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{553}}{2*2}=\frac{-7-\sqrt{553}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{553}}{2*2}=\frac{-7+\sqrt{553}}{4} $
| 52=h/8+49 | | y-74=-1 | | 27+4z=10z+30-6z | | 67+56+x=180+ | | 2x+30+10x-14=3x+5 | | 9=4w-7 | | 12n-8-2n+10-4=9 | | 2x+3=-6x-5 | | 1/2(5.2)(4.5)=x | | 8-+2y+14-6y=14 | | 1y+4=2y+-16+−10 | | 4+4/12x=2 | | 12=4f-8 | | −7y+3=−8y+6 | | 50+2x=1000 | | (x+15)+(5x-7)=(3x-5) | | 144x^-9=0 | | 6-5(n+1)=-9 | | 7+3(x-4)-19=-45 | | 6m+15m-11m+5m+-16m=4 | | 20/p=5/8 | | 1y+3=2y+-8+-7 | | 7-8x=2x-4 | | 6-5n+1=-9 | | -14s+13s=-11 | | X^2+19x+104=-2x | | 64+3(x+7)=274 | | -1-7(x+4)=-29-7x | | 18k+k+4K-20k=3 | | 5(x+2-6)=10 | | 20a+6a-18a=16 | | 15k+3k-8k-k=18 |